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The ongoing urbanisation and climate change urges further understanding

and monitoring of weather in cities. Two case studies during a 17-day period

over the Amsterdam metropolitan area, the Netherlands, are used to illus-

trate the potential and limitations of hydrometeorological monitoring using

non-traditional and opportunistic sensors. We employ three types of oppor-

tunistic sensing networks to monitor six important environmental variables:

(1) air temperature estimates from smartphone batteries and personal weather

stations; (2) rainfall from commercial microwave links and personal weather

stations; (3) solar radiation from smartphones; (4) wind speed from personal

weather stations; (5) air pressure from smartphones and personal weather

stations; (6) humidity from personal weather stations. These observations

are compared to dedicated, traditional observations where possible, although

such networks are typically sparse in urban areas. First we show that the pas-

sage of a front can be successfully monitored using data from several types

of non-traditional sensors in a complementary fashion. Also we demonstrate

the added value of opportunistic measurements in quantifying the Urban Heat

Island (UHI) effect during a hot episode. The UHI can be clearly determined

from personal weather stations, though UHI values tend to be high compared

to records from a traditional network. Overall, this study illustrates the enor-

mous potential for hydrometeorological monitoring in urban areas using non-

traditional and opportunistic sensing networks. (Capsule Summary) Several

opportunistic sensors (private weather stations, commercial microwave links

and smartphones) are employed to obtain weather information and success-

fully monitor urban weather events.
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1. Introduction60

Traditionally, hydrologists and meteorologists, scientists and practitioners alike, have relied61

on dedicated measurement equipment in their research and operations. Such instruments are62

typically owned and operated by governmental agencies. Installed and maintained according to63

(inter)national standards, they offer accurate and reliable information about the state of environ-64

ment we study, monitor and manage. Standard instruments are often based on novel measurement65

techniques that originate in the research community and have been tested extensively during66

dedicated field campaigns.67

68

Unfortunately, the operational measurement networks available to the hydrometeorological69

community today often lack the required spatial and/or temporal density for high-resolution70

monitoring or forecasting of rapidly responding environmental systems. Apart from the high71

installation and maintenance costs of such dedicated networks, it can be challenging, if not im-72

possible, to install meteorological monitoring instruments according to the official requirements73

in urban areas (Oke 2006).74

75

Yet, sensors are omnipresent in our environment nowadays, often related to the rapid devel-76

opment in wireless communication networks (e.g. McCabe et al. 2017; Balsamo et al. 2018;77

Tauro et al. 2018; Zheng et al. 2018). To make use of such opportunistic sensors could be greatly78

beneficial to (meteorological) science and environmental monitoring and management operations.79

Opportunistic sensors are devices that were not installed with the intention to generate large-scale80

observations, but can be used as such. They may not be as accurate or reliable as the dedicated81

equipment we are used to, let alone meet official international standards. However, they are82
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typically available in large numbers and are often readily accessible online. Hence, combined83

with smart retrieval algorithms and statistical treatment, opportunistic sensors may provide a84

valuable complementary source of information regarding the state of our environment.85

86

This article surveys recent opportunistic sensing techniques in meteorology, from (1) rainfall87

monitoring using commercial microwave links (CML) from cellular communication networks,88

via (2) crowdsourcing urban air temperature, pressure and solar radiation using smartphones to89

(3) high-resolution urban monitoring of air temperature, pressure, humidity, wind speed, and90

rainfall using personal weather stations (PWS). Other opportunistic sensing examples are: using91

security cameras as rainfall indicators (Allamano et al. 2015), rainfall information from sensors92

in driving cars (Rabiei et al. 2013), deriving the UHI from measurements of gradients of shallow93

groundwater94

citepBuik2004, using fiber-optic cables (Bense et al. 2016), using airplanes to measure upper-air95

wind and temperature (de Haan 2011), using hot-air balloons to measure boundary-layer winds96

(de Bruijn et al. 2016), smartphone anemometers (Hintz et al. 2017), or using networks of solar97

panels for radiation monitoring. Muller et al. (2015); Zheng et al. (2018) provide excellent98

overviews of past and ongoing projects making use of opportunistic sensing techniques, and99

USAID (2013) showcases practical applications of crowdsourcing projects for agricultural100

purposes in Africa. We limit ourselves to the presented techniques since these are relatively101

established even in developing countries, discussed in detail in literature, and observe near the102

Earth’s surface.103

104

We present a 17-day analysis for the Amsterdam metropolitan area, the Netherlands, where105

these opportunistic sensors are employed in a complementary fashion, in particular to provide106
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detailed monitoring (both time series and spatially) of the passage of a front, as well as to107

demonstrate the potential of opportunistic sensors to quantify the Urban Heat Island (UHI) effect.108

This study aims to showcase the availability of several opportunistic sensing techniques and their109

ability to capture meteorological events.110

111

2. Sampling techniques112

a. Traditional sensing methods113

We use three traditional data sources as reference for the opportunistic sensing observations: a114

gauge-adjusted radar product; the WMO station at Amsterdam airport; and the Amsterdam Atmo-115

spheric Monitoring Supersite (AAMS (Ronda et al. 2017)) urban network. Details on instrumen-116

tation and processing of these datasets are provided in the Appendix.117

b. Opportunistic sensing methods118

1) SMARTPHONE DATA119

Smartphones contain many sensors to support their functionality, including sensors for light120

levels to adjust screen brightness, pressure sensors to complement the GPS for an accurate121

(vertical) location estimation, and thermometers for the battery to avoid damage from overheating.122

Readings from such sensors can be used for opportunistic environmental sensing by collecting123

them through mobile applications (‘apps’). These apps sample the sensor readings with a certain124

frequency, along with the last stored GPS coordinates. Examples of apps that collect and store125

smartphone sensor readings include Pressurenet (http://www.cumulonimbus.ca/) (Mass and126

Madaus 2014; Madaus and Mass 2017), OpenSignal (https://opensignal.com/), and Atmos127
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(Niforatos et al. 2014, 2017).128

129

Mass and Madaus (2014); Madaus and Mass (2017); McNicholas and Mass (2018), show that130

assimilating smartphone pressure data into NWP models improves representation of convective131

events. Likewise, Hintz et al. (2019) show for a case in Denmark that assimilating smartphone132

pressure observations decreased the surface pressure bias in a NWP model. Different quality133

control methods were applied: for Madaus and Mass (2017) the raw smartphone pressure readings134

were filtered to only include one value per smartphone per assimilation time step, and were also135

corrected for the terrain elevation and checked for spatial and statistical consistency. Hintz et al.136

(2019) additionally use a consistency check with synoptic observations. In McNicholas and137

Mass (2018) a machine learning algorithm was used to remove outliers. Niforatos et al. (2017)138

compared smartphone light sensor readings with manually reported classifications of weather,139

which showed light readings to be indicative of present weather conditions.140

141

City-wide air temperatures can be estimated from smartphone battery temperature readings, as142

has been shown for eight major cities (Overeem et al. 2013b), for the city of Birmingham (Muller143

et al. 2015) for daily temperatures, and for São Paulo for hourly and daily temperatures (Droste144

et al. 2017). Statistical training with independent temperature measurements was performed based145

on a steady-state heat transfer model: a smartphone is typically carried close to the user’s body.146

The thermal energy generated by the smartphone must be balanced by heat exchange to the body147

and the environment. The conductive heat flow between two adjacent systems is assumed to148

be proportional to their temperature difference, and depends on the thermal insulation between149

smartphone and environment, and between smartphone and body. This principle allows us to150

estimate hourly-averaged air temperatures from hourly-averaged battery temperatures (Overeem151
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et al. 2013b):152

T̄ A,hour
e, j,h = mh

j(T̄
A,hour

bat, j,h −T0)+T0 + ε j,h, (1)153

where T̄ A,hour
e, j,h is the hourly mean urban air temperature, T̄ A,hour

bat, j,h is the hourly-averaged battery154

temperature (both in space A and time), and T0 a constant equilibrium temperature. mh
j is a155

coefficient, ε j,h is a random disturbance, and h denotes the hour.156

157

In this study we build upon a large dataset of observations obtained from the Android appli-158

cation OpenSignal, which crowdsources data relevant to wireless connectivity along with the159

aforementioned sensor readings. Compared to the previously mentioned studies, readings were160

obtained at a far higher frequency, i.e. 15-s intervals whenever the smartphone screen is active,161

not requiring the app to be opened by the user. A total of 3.14 million smartphone observations162

are available for the entire study period for the Amsterdam metropolitan region (larger domain in163

Figure 1a).164

165

The OpenSignal dataset includes self-reported accuracy scores (1, 2 or 3) of the light and166

pressure readings, as determined by the sensor management software in the smartphones (Android167

2019). Only readings with the highest possible accuracy were included in our analysis. All168

smartphone pressure sensor readings below 950 hPa are excluded, based on the lowest recorded169

pressure in the Netherlands, 954.2 hPa (de Haij 2009), which results in a dataset of 2.06 million170

pressure readings. Light sensor readings above 0 lux are taken into account, leaving 2.32 million171

light readings in the whole study period. We only include battery temperature readings between172

10 – 47◦C when the smartphone is not charging: 0.4 million temperature readings within the city173

center. Hourly battery temperature readings are averaged spatially over the city center domain174
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(Figure 1b), light and pressure are averaged over the entire region for each hour (Figure 1a).175

176

Ambient air temperatures are estimated from battery temperature (Eq. 1); the value of equilib-177

rium temperature (T0) as optimized by Overeem et al. (2013b), 39◦C, is used. Figure 1b shows178

the positions of the underlying battery temperature readings. Two different datasets are derived:179

one without and one with optimizing the coefficients of the heat transfer model for the available180

dataset. The first dataset uses a fixed value of mh
j for all hours, 2.4, as found for a summer period181

in London based on daily averages (Overeem et al. 2013b). These results, without further model182

calibration, are presented in Figure 2b, which also shows the 25th and 75th percentile. For the183

second dataset, records from 1 June 00:00 UTC –15 June 00:00 UTC are employed to calibrate a184

value of mh
j for each clock-hour (24 in total , ranging between 2.0 to 2.6). These optimized values,185

found using a least squares regression, are applied to the validation dataset from 16 June 00:00186

UTC – 23 June 00:00 UTC.187

188

A smartphone light sensor measures illumination in lux (lumen m−2), i.e. irradiance weighted189

for the visible part of the electromagnetic spectrum, so a measure for the perceived brightness for190

the human eye. To estimate the equivalent solar radiation, we use an empirical factor of 0.0079191

lux per W m−2, based on the spectral distribution of sunlight (Chua 2009). By applying this192

transformation, the readings are treated as if they were measurements of solar radiation. This is193

a fairly strong assumption, as we expect that most readings will not be made in a representative194

manner: with the smartphone perpendicular towards the Sun and in direct sunlight. User behavior195

plays a large role (e.g. indoor versus outdoor measurements), so one may expect that most light196

readings will underestimate the solar radiation, resulting in a skewed distribution. A light sensor197

in a smartphone has a limited view angle (<180◦) and has a relatively poor cosine response.198
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Additionally, the sensor can over-saturate at high light intensities (the sensor limit is typically199

around 200 W m−2). Therefore it is desirable to have many readings to increase the probability of200

observations taken in favorable conditions (unshaded and perpendicular to direct sunlight).201

202

Because smartphone measurements are taken when the smartphone is used, most data is203

available for those times where people are active. Since hundreds of smartphone measurements204

are required to obtain a good signal of air temperature (Droste et al. 2017), spatial detail is limited205

to Local Climate Zone (LCZ, (Stewart and Oke 2012)) scale at best, and temporal resolution to206

roughly hourly. The data at this availability is useful to get a broad overview of urban temperature,207

but not for (spatially) detailed studies.208

209

2) COMMERCIAL MICROWAVE LINKS210

Cell phone communication relies on a telecommunication link network that consists of transmit-211

ting and receiving antennas, typically several km apart, between which radio signals propagate.212

Telecom operators commonly use signal frequencies that are sensitive to hydrometeors. This213

causes attenuation of the microwave link signals when liquid precipitation occurs between the214

antennas. Upton et al. (2005) first suggested to use signal attenuation in CML networks, which215

is typically monitored for quality control purposes, to determine rainfall. Soon after, this was216

shown to be successful with actual CML data (Messer et al. 2006; Leijnse et al. 2007). This was217

promising as microwave link networks are widespread, also in areas of the world with limited218

to no traditional rainfall sensors. Subsequent research has focused on improving the techniques219

to obtain accurate rainfall estimates from these datasets, (e.g. Leijnse et al. 2008; Zinevich et al.220

2010; Overeem et al. 2011; Chwala et al. 2012) and produce rainfall maps (Overeem et al. 2013a,221
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2016b) with real-time applicability (Chwala et al. 2016; Andersson et al. 2017; Chwala et al.222

2018). Comprehensive overviews of literature on this technique were provided by Messer and223

Sendik (2015), Uijlenhoet et al. (2018), and Chwala and Kunstmann (2019). Several tools have224

been developed, documented and made (freely) available for users to construct rainfall obser-225

vations with CML data: ‘Rcmlrain’ (https://github.com/fenclmar/Rcmlrain), ‘RAIN-226

LINK’ (https://github.com/overeem11/RAINLINK), ‘pycomlink’ (https://github.com/227

pycomlink/pycomlink), and ‘pySNMPdaq’ (https://github.com/cchwala/pySNMPdaq).228

229

The relation between rainfall attenuation and rainfall intensity can be described with a power law230

between path-averaged specific signal attenuation (k in dB km−1) and link path-averaged rainfall231

intensity (R in mm h−1) (Atlas and Ulbrich 1977):232

R = akb (2)

where233

A = TSL−RSL; k =
Awet−Adry−Aa

L
(3)

Coefficients a (in mm h−1 dB−b kmb) and b (-) are dependent on signal frequency and234

polarization (Olsen et al. 1978; Jameson 1991). TSL and RSL are the transmitted and received235

signal level (dB) respectively, Aa is the attenuation due to wet antennas (dB) assumed as a fixed236

value, Awet and Adry are the attenuation under wet and dry weather conditions respectively (dB)237

and L is the length of the link path (km). The specific attenuation due to rainfall is what remains238

when the attenuation due to other causes (i.e. dry weather conditions and wet antennas) are239
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subtracted.240

241

The time series shown in Figure 2d originate from the T-Mobile CML network visualized in242

Figure 1a. Between 6 June 00:00 UTC and 10 June 14:00 UTC, 74 links were operational in243

the study area. Power levels were instantaneously sampled every 15 min. Due to data transfer244

issues, no power levels were available at the end of the study period. Rainfall time-series for each245

link were constructed with the open source package RAINLINK (Overeem et al. 2016a), using246

the approach and optimized parameters from (de Vos et al. 2019b). The wet antenna attenuation247

makes up a larger fraction of the total attenuation for short links, meaning that a small error in Aa,248

a constant, will result in a relatively large error in k for short links, and the effect on the estimated249

value of R would subsequently be larger than for long links given the same error in Aa.250

251

3) CROWDSOURCED PERSONAL WEATHER STATIONS252

PWSs allow anyone to measure weather variables in their direct environment. Many automatic253

PWSs can upload their measurements directly to online platforms where they can be visualized254

and shared. Weather Underground (https://www.wunderground.com/wundermap), WOW-NL255

(https://wow.knmi.nl/) and the Netatmo Weathermap (https://weathermap.netatmo.256

com/) are examples of platforms where weather observations are visualized in real time. Ideally,257

weather variables can be crowdsourced from such platforms in far higher spatial and temporal258

resolution than from traditional sensor networks.259

260

The devices are often low-cost with a lower expected measurement accuracy than typical261

sensors from meteorological institutes. The PWSs are installed by citizens without expert262
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knowledge on sensor placement requirements and/or lacking available measurement site without263

interference from surroundings. Hence we expect that many of the PWSs generate compromised264

measurements. For tipping bucket rain gauges, obstructions (e.g. insects, twigs) and the device not265

being completely level with the ground, could hinder the tipping mechanism. A shielded location266

will also lead to underestimation of rainfall. Overestimation of rainfall can result from PWS267

owners cleaning or handling the device, resulting in tipping bucket tips, creating measurements268

of artificial rain. PWS wind measurements are also largely affected by their position in relation269

to obstacles and the shielding effect of buildings. Furthermore, PWSs with a sonic anemometer270

are sensitive to rain blocking the path of the sound waves, so data quality might be compromised271

during rain events. Urban wind is highly variable in space, and is often measured as profile using272

e.g. LIDAR (Drew et al. 2013), so spatial averaging of PWS wind measurements is needed to273

obtain useful data. Temperature readings are highly affected by direct radiation: the lack of a274

proper radiation screen in most PWSs can result in overestimation of temperature by several275

degrees when positioned in direct sunlight (Bell et al. 2015; Chapman et al. 2017). Finally, the276

updates of measurements to the platform can be infrequent, and connectivity problems will result277

in large gaps in the time series.278

279

Only a few studies compared PWSs with high-end sensors; temperature, relative humidity,280

radiation, pressure, rainfall, wind speed and direction: Jenkins (2014); Bell et al. (2015),281

temperature: Meier et al. (2015), rainfall: de Vos et al. (2017). Other studies have benefited282

from available PWS temperature records in cities. The UHI is then defined as the difference283

between PWS temperatures and a rural reference station (Meier et al. 2017; Chapman et al. 2017;284

Fenner et al. 2017; Golroudbary et al. 2018; Napoly et al. 2018). Preliminary work has been285

performed on crowdsourced wind (Droste et al. 2018) and rainfall measurements (de Vos et al.286
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2017; Golroudbary et al. 2018; Chen et al. 2018) (and explored with simulated PWS rainfall287

measurements by de Vos et al. (2018) as well). In other studies code has been developed and made288

available to apply quality control on crowdsourced PWS data (the CrowdQC R-package for PWS289

temperature observations https://depositonce.tu-berlin.de//handle/11303/7520.3290

and TITAN https://github.com/metno/TITAN/ , and code to filter crowdsourced rainfall291

observations PWSQC https://github.com/LottedeVos/PWSQC.).292

293

Measurements from all personal weather stations from the brand Netatmo in the Amsterdam294

study area (Figure 1a) are evaluated. All devices measure temperature, pressure and humidity.295

Additionally, rain and/or wind are measured in case those optional modules are installed for that296

PWS. In order to standardize the variable time intervals, all measurements are attributed to the297

timestamp of the 5-min interval in which it occurred. If multiple measurements occurred within298

the 5-min interval they are averaged (or accumulated in case of rainfall). The measurements over299

the study period are shown in Figure 2 (panels (a), (c), (f) and (h)), where panel (i) indicates the300

dewpoint depression (DPD) as calculated from the temperature and humidity measurements from301

the PWS. No QC treatment is applied on the PWS data to showcase the raw potential. DPD is here302

preferred over dewpoint temperature itself to identify the frontal passage.303

3. Case selection & study area304

We selected Amsterdam (capital of the Netherlands) and its surroundings and the period305

between 6 June 2017 00:00 UTC and 23 June 2017 00:00 UTC as case study period (local time is306

UTC+2 hours). This period contains both sufficient data from opportunistic sensing techniques,307

and interesting meteorological events to illustrate the potential of the opportunistic sensing308

techniques. The selected region is bound by 4.67–5.05◦E & 52.24–52.44◦N (26 km × 22 km).309
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To be able to distinguish between the inner city and suburbs, the study area was divided into310

two parts, i.e. the urban center dataset: 4.83–4.95◦E. & 52.34–52.38◦N and the suburban dataset311

4.67–5.05◦E. & 52.24–52.44◦N, excluding the urban center area (Figure 1a).312

313

The Netherlands has a temperate maritime climate (Köppen Cfb). With a mean temperature314

of 18.0◦C and 50.5 mm of rainfall June 2017 was about 2.5◦C warmer and 10.5 mm drier than315

the climatological mean (based on the past 30 years of observations at station WMO 06240316

Amsterdam airport, henceforth referred to as ”Amsterdam airport”). The month had eight summer317

days and two tropical days (max. temp. above 25 & 30◦C respectively).318

319

On June 6, a small low-pressure system developed over the North Sea off the coast of the320

Netherlands and passed over the country, resulting in a substantial pressure drop to 992 hPa, an321

hourly maximum wind speed of 54 km h−1 (7 Bft) and 12 mm of rainfall measured at Amsterdam322

airport. In the morning of June 9, an active cold front brought in relatively cold air which resulted323

in 27 mm of rainfall. A clear-sky episode occurred 9–11 June, while another cold front passed324

in the early morning of June 12 (Figure 2i). In the following period, no rainfall occurred, and325

temperatures were mild (daily maximum temperatures below 25◦C), followed by a warm episode326

between June 16 and June 19. On June 19 the maximum air temperature reached 29.8◦C at327

Amsterdam airport. This warm episode ended with the passage of a cold front and associated328

rainfall and thunderstorms on June 22. For the remainder of the paper we will focus on two cases,329

i.e. case A, describing the passing front and resulting rainfall at the start of the study period, and330

case B, containing the hot summer period, with a focus on UHI detection.331

332
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For this study, the UHI is defined as the instantaneous urban air temperature difference between333

the city and the countryside (Stewart 2011). The UHI develops as a result of the relatively low334

albedo of cities, high heat capacity of the urban fabric, thermal radiation trapping, and low surface335

evapotranspiration. The UHI is favored by weather conditions with high solar insolation (low336

cloud cover) and low wind speeds (Oke 1982; Theeuwes et al. 2017). Earlier crowdsourcing337

observations indicated that Dutch urban areas experiences a mean daily maximum UHI of 2.3◦C338

and the 95th percentile amounts to 5.3◦C (Steeneveld et al. 2011). Ronda et al. (2017) found a339

mean evening UHI of ∼ 1◦C, and a maximum of 4.5◦C in Amsterdam for the summer of 2015 as340

a whole.341

4. Results342

a. Case A: Weather front343

First we focus on the passage of a cold front over the study area on June 9. At 6:00 UTC the344

operational model analysis provided by KNMI locates the frontal zone to the west of Amsterdam345

(not shown), and by 12:00 UTC the front has passed the city. Prior to the frontal passage itself,346

an upper air disturbance passed over Amsterdam between 3:00 and 4:00 UTC, bringing strong347

convection and rainfall. Such frontal zones cause distinctive behavior in various meteorological348

variables, which we expect to be distinguishable in the crowdsourced data (Figure 2).349

350

The passage of the front is clearly visible in the observed DPD and the wind speed (Figure 3a).351

The DPD steadily drops during the approach and passage of the cold front, reaching a minimum352

of 1.4◦C at 9:00 UTC. Between 10:00 and 11:00 UTC, when the front has passed, the DPD353

increases again up to 6.8◦C, indicating the cold and dry air mass brought in by the cold front.354
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Crowdsourced and reference wind speed steadily increase as the front passes (from 2 to over 4355

km h−1), before reaching its maximum (5 km h−1) directly after the passage. The convection356

associated with the upper air disturbance at around 3:00–4:00 UTC generates a strong peak in357

the wind speed. Despite the unknown measurement setup of the PWS anemometers, the average358

signal of all PWSs corresponds well to that of the quality-controlled reference AAMS network359

(mean bias of 0.4 km h−1), which shows the same behavior for the upper air disturbance and the360

front passing. However, the AAMS signal indicates a delayed onset of the wind speed increase (at361

around 9:00 UTC) and takes longer to reach a higher maximum wind speed.362

363

The ambient air pressure (Figure 3b), measured by PWSs and smartphones, starts increasing364

at the moment the front passes (8:00 UTC). Typically, air pressure decreases before a cold front,365

rapidly increases during the passage, and increases at a slower rate afterwards. The expected drop366

prior to the frontal passage is not very pronounced in the measurements: there is a slight decrease367

in pressure between 0:00 and 2:00 UTC (1.7 hPa decrease for PWS; 3.5 hPa for smartphone).368

The latter is more likely associated with the upper air disturbance. After the frontal passage at369

8:00 UTC, the pressure rises, from 1006–1008 hPa (PWS–smartphone) up to a maximum of370

1013–1016 hPa at midnight. The pressure tendency remains roughly 1 hPa hour−1 after the front371

has passed.372

373

The light intensity as measured by smartphones shows a distinct diurnal pattern in Figure 2e,374

following the course of solar radiation. The measured data are strongly skewed, so the median375

light intensity values are low (Figure 2e). Figure 4 shows the 99th percentile of light readings to376

capture the readings made in the most favorable light conditions (see Section 2.b.1). The sky on377

June 9 is overcast (8 octas) until 11:00 UTC, at which time the front has passed over Amsterdam378
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and the sky clears up to scattered cloudiness (Figure 4). The light intensity is also very low until379

10:00 UTC, even though this is well within daylight hours. Compared to June 18 (a clear day)380

the light intensity is roughly halved, and the shape of the line is not as symmetrical (as we would381

expect from the diurnal cycle of global radiation). The green lines in Figure 4 indicate the other382

days over the study period, showing the strong variability in the daily course of light intensity.383

The light intensity measured by smartphones not only depends on incoming radiation, but also384

strongly on user behavior (indoors vs outdoors, the angle of the phone) and the type of light sensor385

in the smartphone, which can differ between brands. The light sensor may also be oversaturated386

during high light intensities, resulting in flattened peak values.387

388

The light intensity peak at 4:00 UTC coincides with the the upper air disturbance seen389

in Figure 3, but is actually an artifact of the low number of observations. The number of390

available observations is higher during the day than during night and early morning, since it391

is related to user activity whether the smartphone logs an observation (as detailed in Section392

2.b.1). At 4:00 UTC there are only 502 smartphone observations, compared to 10,373 at 15:00393

UTC (17:00 local time, the typical end of the working day), so the data is more sensitive to outliers.394

395

The upper air disturbance, and subsequent frontal passage, of June 9 results in 27 mm rainfall396

as measured by the gauge-adjusted radar reference. Figures 2c and 2d show that the peak of397

rainfall occurs after sunrise, coinciding with the timing of the frontal passage. Figures 5a and398

5b depict the cumulative rain over June 9, measured by CML and PWS, against the reference.399

Total amounts differ between the two methods, but both show the same time response. The400

relatively short links (< 2 km) overestimate rainfall, with the majority reporting > 30 mm rainfall401

(relative bias is 87%). The longer links (>= 2 km) also tend to overestimate, but much less402
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extreme (relative bias is 12%). Although the expected uncertainty in rainfall estimates is higher403

for short links, the larger systematic bias (54% relative bias, or 0.13 mm absolute bias, for all404

links) indicates that the methods to derive rainfall (RAINLINK) were not ideal for this rainfall405

event, especially for short links.406

407

PWS measurements tend to underestimate the rain as measured by the reference, with some408

occurrences of large reported rainfall values that are not otherwise captured (Figure 5b). Never-409

theless, the majority of PWSs seem to agree overall with the reference (Figures 5b and d). The410

spatial distribution of rainfall (Figure 6) measured by PWS and CML corresponds to that of the411

gauge-adjusted radar reference. We find that areas with high rainfall in the reference also yield412

high accumulations in the CML and PWS data in these areas. The overestimation by short links413

up to 8 mm is visible to the northwest of the band with high rainfall. The rainfall observations by414

PWSs correspond well to the spatial pattern of rain, although a number measure little (< 1 mm)415

rain during the hour represented in Figure 6. These stations are mainly clustered in the city center.416

The large amount of obstructions inside the city center could reduce the rainfall received by the417

stations, which may partly explain the underestimation tendency already seen in Figures 5b and d.418

419

b. Case B: Urban Heat Island420

The last days of the study period are characterized by high temperatures and generally clear,421

sunny weather, leading to higher urban temperatures (PWS median air temperature up to 30◦C on422

June 19, Figure 7). Air temperature is measured by PWS, and derived through the smartphone423

battery temperature using the second, calibrated dataset (Section 2.b.1). The AAMS network424

serves as urban reference, and the Amsterdam airport measurements are used as rural reference425
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for the UHI (Figure 7b). The smartphone-derived air temperature differs clearly from the PWS426

and AAMS measurements, with more erratic behavior and strong minimum values at night and427

early morning (as low as 7◦C when the AAMS values are above 16◦C). Figure 7c showcases this428

larger spread, also indicated by the large standard deviation (2.82 ◦C compared to 0.66 and 1.08429

◦C for the PWS). During daytime the smartphone-derived temperatures correspond better with the430

PWS and AAMS measurements than at night. The diurnal cycle is clearly visible: the low values431

at night are most likely due to a low number of measurements available, increasing the sensitivity432

to outliers. Despite these occasional large deviations, the bias amounts to -0.6◦C compared to433

AAMS (Figure 7c), which is relatively small. A large positive bias (2.0◦C) is found when a fixed434

literature value for mh
j is used, for the time series shown in Figure 2b, whereas the other model435

statistics are mostly uninfluenced by optimizing mh
j .436

437

The diurnal pattern of air temperature between center and suburban PWSs is similar, although438

the center stations tend to be warmer at night, and colder during the day (Figure 7a).The suburban439

stations contain a higher spread and bias than the center stations, though both show good440

agreement to the reference (Figure 7c). The AAMS air temperature is typically about 2 to 3◦C441

lower during the day: this could partially be caused by the unknown setup of the Netatmo station,442

which is likely be exposed to direct sunlight or close to walls, making it sensitive to radiation443

errors. Figure 7b depicts the UHI estimated by subtracting the center and suburban PWS (red444

dashed line). This particular PWS–UHI shows spatial variability within the PWS data, which445

is most pronounced during daytime, where the difference can be up to -1.5◦C (i.e. the center is446

1.5◦C colder than the suburban area). Higher urban shading in the morning, and the faster heating447

rate of the relatively thin rural boundary layer compared to the the deeper urban boundary layer448
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cause this urban cool island in the morning (Theeuwes et al. 2015).449

450

The other two UHI estimates are constructed using Amsterdam airport as rural background,451

showing that the city center is indeed much warmer at night than the rural surroundings. Urban452

cool islands typically form in the morning, persisting for several hours before the city heats up453

more. A remarkable 6◦C UHI peak is visible on June 22, in the afternoon (13:00–14:00 UTC).454

This seems to be mainly caused by the Amsterdam airport temperature, since the PWS–UHI455

(which has no true rural reference) shows a value close to 0◦C at that time. This is visible in456

Figure 7a, where temperatures rapidly decrease in the course of a few hours on June 22 afternoon.457

Thunderstorms were reported on this day, and several mm of rain were measured at Amsterdam458

airport (according to radar) between 14:00 and 15:00 UTC. The UHI in this case is likely caused459

by the sudden cooling of the rural reference, rather than strong urban heating.460

461

Figure 8 presents the spatial variability in the AAMS and PWS temperature recordings between462

2:00 and 3:00 UTC on June 18, when the UHI is typically largest. The cluster of stations in the463

center yields higher values than the suburban stations, although in both areas many stations deviate464

from this trend. The center PWS report an average UHI of 4.0◦C, the AAMS UHI is 3.6◦C,465

whereas the suburban areas have an average UHI of 2.7◦C. Variability between measurement466

sites is high: some stations report a temperature difference of up to 12.4◦C, and even a few with467

negative UHI (up to -0.6◦C).468

469
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5. Discussion and conclusions470

a. General471

We have shown that even though each technique has considerable limitations regarding accu-472

racy, the data from opportunistic sources can be used to monitor meteorological phenomena. The473

potential of these techniques lies in the high spatial density of such observations, especially in474

urban areas.475

We explicitly consider observations that can be obtained near-directly from the opportunis-476

tic sensors, without applying many correction schemes, to illustrate their inherent potential:477

validation using the available quality assurance schemes was not the aim of this research. We478

use temperature from smartphone batteries and personal weather stations (PWS), rainfall from479

commercial microwave links (CML) and PWS, solar radiation from smartphones, wind speed480

from PWS, air pressure from smartphones and PWS, and humidity from PWS. Two case studies481

in a 17-day period over the city of Amsterdam, the Netherlands, are explored. In the first case482

study we show how the passage of a front is apparent from many of the data sources. The second483

case study shows that these measurements can be valuable in monitoring the Urban Heat Island484

(UHI) effect, especially given the fact that WMO stations in urban areas are very rare.485

486

The passage of a cold front is visible in all of the studied opportunistic sensing data sources.487

The dynamics of the temperature (especially from PWS, less so from smartphones), rainfall, solar488

radiation, wind speed, air pressure, and humidity all show the passage of the front. However,489

not every aspect of the weather events is sufficiently captured by the data: techniques using490

smartphone observations can only estimate a variable as a spatial average over the city and cannot491

be used to describe detailed spatial variability. Also, the PWS wind observations were too noisy492

23

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0091.1.



to describe spatial patterns in the city with confidence.493

494

A rural reference station is needed to quantify the UHI, for which we use the WMO station495

Amsterdam Airport. Even the PWS locations outside the city center of Amsterdam (suburban,496

see Figures 1 and 8) are mostly in built-up areas, and are hence expected to experience the UHI,497

although less severely. This is supported by Figure 7b, where the temperature difference between498

the city center and the suburban areas is much less pronounced than when the WMO station is499

used as rural reference. Using a single rural reference to quantify the UHI, instead of multiple500

background stations, is a good practice when the main interest is in the intra-urban variability of501

temperature, as in this work and e.g. Fenner et al. (2017). However, a limitation of this practice is502

evident from the artificially high UHI we see in Figure 7 on June 22, which was caused by local503

cooling at the rural site. Finally, we note that the distinction between center and suburban in this504

study was made rather crudely. In future UHI studies we recommend a more sophisticated parti-505

tioning of the stations into different classes (such as Local Climate Zones (Stewart and Oke 2012)).506

507

b. Temperature508

The PWSs are suitable for monitoring the UHI. When compared to the AAMS urban reference509

network, these PWS show an UHI of the same order of magnitude (2–4◦C), especially during510

the night. We observe urban cool islands during the period between sunrise and local noon. Air511

temperatures derived from smartphone battery temperatures exhibit much more noise than PWS512

temperatures, which limits their use for UHI measurement. We note that the PWS thermometers513

are not shielded from solar radiation or ventilated, whereas the AAMS are. This is clearly visible514
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in Figure 7, where the PWS temperature (and derived UHI) increases much more quickly than the515

AAMS temperature. This corresponds to the findings of Bell et al. (2015).516

c. Pressure517

Both smartphones and PWSs provide good estimations of pressure. Pressure fields are relatively518

constant in time and space, and both opportunistic sensing techniques show ability to describe519

them.520

d. Light521

Light estimations derived from smartphones are highly variable in time. The indirect nature522

of the measurement and the typical suboptimal conditions during sampling result in merely an523

indicative observation of light. Such measurements should only be considered in the absense of524

dedicated sensor observations and considered with caution.525

e. Wind526

Average wind speed from the PWSs are very low compared to what would be expected during527

the passage of a front. This may partly be due to how the PWS anemometers are installed.528

However, the carefully installed AAMS stations show average wind velocities of the same order529

of magnitude (around 5 km h−1), indicating that the placement of the anemometers does not play530

a large role here. The reasons for these wind speeds to be lower than expected lies in the fact531

that the urban wind measurements are made at a lower level, and the urban fabric greatly reduces532

wind speeds at street level (Macdonald 2000). This also means that wind speeds are expected to533

be highly variable across the city, which is clear from Figure 2f. Spatial averaging over the city is534

therefore needed in order to see clear signals in the wind speed. Spatial averages of wind speed535
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show the same behavior between PWS and AAMS, indicating their use to measure the urban wind536

as a whole. Note that the wind sensor on the Netatmo PWS is a sonic anemometer, which are537

negatively affected by precipitation, hence wind observations during rainfall can be less reliable.538

This illustrates the need of a quality-control procedure which could improve overall data quality539

by filtering out precipitation events (Droste et al. 2018).540

541

f. Rainfall542

Data from PWS and CML are shown to provide useful information on both rainfall amount543

and space-time variation. Their ability to show detailed variations in space and time makes them544

useful for qualitative use in rainfall monitoring. The CML network overestimated rainfall in case545

A (Figure 5a), although the relative bias of long links (>=2 km) was 71% smaller than that of546

short links (<2 km). This is likely related to the larger error contribution wet antennas have for547

shorter links, and that the correction was calibrated on a different dataset, possibly with more long548

links (de Vos et al. 2019b).549

550

The PWS also show a good agreement with the reference, although most stations underestimate551

rainfall (Figure 5b). This may be due to the higher wind speed above the urban fabric which could552

cause buildings to act as a shield for the PWS rain gauges. It is also apparent from Figure 5d that553

some PWSs report either zero rainfall when there is clearly rain or large amounts of rainfall where554

there was none. Such, and other errors could be corrected by using automated filters (de Vos et al.555

2019a). The difference in accumulations between the city-averaged CML and PWS rainfall data556

(see Figure 2) is partly caused by the overestimation by CML. However, differences may also be557

due to the spatial variation of rain and the respective locations of the PWS and CML. Figure 6558
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shows that for the examined hour the CML are more abundant in high-rainfall areas, whereas the559

PWS are more clustered in the city center, where less rainfall was observed.560

561

The method used to derive rainfall estimates from CML data (RAINLINK) is one of many562

possible methods (see Section 2.b.2). Our dataset consists of instantaneously sampled CML data,563

which is more prone to errors than CML data obtained with other sampling strategies and/or more564

frequently than every 15 min (de Vos et al. 2019b).565

566

g. Outlook567

Our study shows that the research opportunistic sensing techniques all yield meaningful results.568

However, without quality control procedures, PWS data performs better than smartphone or569

CML measurements. The PWS sensors are designed to measure hydrometeorological variables570

and are less reliant on quality control than the indirect CML or smartphone observations. A571

thorough procedure which removes error sources will therefore be most effective for the CML572

and smartphone data, which can strongly improve with regards to the unfiltered signal. This may573

change in the future when the expected measurement density of smartphones increases and their574

hardware (sensor capability) improves. The observations contain large errors, as found by the575

larger spread in the data than would be explained by spatial or temporal variability. However, the576

opportunistic sensors provide information in time scales and areas that cannot be achieved with577

traditional sensing techniques.578

579

Many PWSs are found in densely populated areas, where also many smartphones are opera-580

tional. This is mainly true for urban areas in parts of the world where people have funds to invest581
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in these devices (although smartphones are considered so important that they are essentially582

ubiquitous, independent of living standards). CML networks differ as well, in sampling strategy583

and frequency (which affects the accuracy of rainfall estimates) and in network density (depending584

on replacement by fiber optic technology). The availability of opportunistic sensing observations585

should be explored in order to judge their usefulness, especially as their accuracy heavily relies586

on the quantity of observations. Because traditional meteorological measurements are generally587

absent in urban areas, these new data provide a welcome addition. This is particularly important588

for monitoring the UHI, and wind and rainfall at street level. We therefore urge the scientific589

community to keep investigating new sources of data, and to study the uncertainties therein. In590

combination with reference networks of meteorological measurements or stand-alone, these new591

sources will provide much needed hydrometeorological information for citizens and scientists, in592

any part of the world.593

594

Acknowledgments. Gert-Jan Steeneveld and Arjan Droste acknowledge funding from the Nether-595

lands Organisation for Scientific Research (NWO) project 864.14.007. Lotte de Vos is financially596

supported by KNMI MSO project 2013.09. The reference stations of the Amsterdam Atmospheric597

Monitoring Supersite have been financially supported by the Amsterdam Institute for Advanced598

Metropolitan Solutions (AMS), which has also provided co-funding (project VIR17006). We599

thank James Robinson from OpenSignal (London, UK) for providing the smartphone dataset.600

We gratefully acknowledge Ronald Kloeg and Ralph Koppelaar from T-Mobile NL for provid-601

ing the cellular telecommunication link data. All PWS owners who have contributed to the Ne-602

tatmo dataset are greatly appreciated, as well as the Netatmo company for making the measure-603

ments available to us. See https://dev.netatmo.com/resources/technical/reference/604

28

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0091.1.



weatherapi/getpublicdata for information on how to obtain Netatmo data. Datasets re-605

trieved from third parties (CML and OpenSignal) are available upon request. The gauge-adjusted606

radar rainfall dataset is freely available in netCDF4 format, ‘Radar precipitation climatology’ via607

http://climate4impact.eu or in HDF5 format at the KNMI Data Centre https://data.608

knmi.nl/datasets/rad\_nl25\_rac\_mfbs\_em\_5min/2.0?q=radar. The AAMS data are609

available upon request (contact: bert.heusinkveld@wur.nl).610

APPENDIX611

Traditional sensing methods612

a. Gauge-adjusted radar dataset613

The Royal Netherlands Meteorological Institute (KNMI) operates two C-band Doppler weather614

radars. The 5-min reflectivity data from these radars are combined into one composite using a615

weighing factor as a function of distance from the radar. Beekhuis and Mathijssen (2018) provide616

detailed characteristics on the radars and the processing of their data. Reflectivity factors Z (mm6
617

m−3) are converted to rainfall intensities R (mm h−1) with a fixed Z-R relationship (Marshall et al.618

1955), Z = 200R1.6, and, subsequently, accumulated to rainfall depths for different durations.619

The two KNMI rain gauge networks are employed to adjust the radar-based accumulated rainfall620

depths: an automatic network with 1-h rainfall depths for each hour (∼ 1 station per 1000 km2)621

and a manual network with 24-h 08:00–08:00 UTC rainfall depths (∼ 1 station per 100 km2).622

A daily spatial adjustment utilizing the manual gauge data is combined with an hourly mean-623

field bias adjustment employing the automatic gauge data. The resulting gauge-adjusted radar624

rainfall dataset has a spatial resolution of 0.9 km2, with no missing data for the study period.625

Overeem et al. (2011) provide a more detailed description of this radar dataset, which largely uses626
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the methodology developed by Overeem et al. (2009a,b). Finally, 15-min path-averaged rainfall627

intensities are derived from the radar pixels covering each link path of the CML dataset (described628

in Section 3.b.2). The gauge-adjusted radar rainfall dataset is used as a reference to validate rainfall629

estimates from CMLs and PWSs.630

b. WMO station Amsterdam airport631

The WMO station Amsterdam airport, WMO 06240 (4.78◦E, 52.32◦N; Figure 1a) provides632

hourly air temperature and cloud cover observations. This surface synoptic station is operated by633

KNMI, situated in a polder (4.18 m below MSL) and surrounded by meadows, arable land, and634

buildings as well as infrastructure from Amsterdam airport. Air temperature is observed at 1.5-m635

height above short mowed grass. The sensor is covered by a radiation screen and well ventilated.636

Cloud cover aloft is obtained from a LD40 ceilometer, which uses LIDAR to detect the height and637

concentration of particles, such as cloud droplets. KNMI (2000) provides more information on the638

temperature observation.639

c. Amsterdam Atmospheric Monitoring Supersite640

As an urban reference network we utilize the observations from the Amsterdam Atmospheric641

Monitoring Supersite (AAMS; Ronda et al. (2017)), which consists of 30 weather stations across642

the city. The network consists of temperature and humidity sensors (Decagon VP-3, U.S.A.)643

mounted inside a 184 mm aspirated radiation shield (Davis, U.S.A.). The ventilation fan is pow-644

ered by 2 small solar panels mounted on top of the shield. The fans work at global radiation levels645

>100 W m−2. The radiation screens are mounted onto lantern posts using a boom to mount the646

center of the radiation screen 0.46 m away from the edge of the lantern post at a height of 4.0647

m above ground level. The sonic anemometer (Decagon DS-2, U.S.A.) has an accuracy of 0.30648
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m s−1) or 3% (whichever is larger). The anemometers were mounted above the radiation screens649

0.50 m away from the lantern post edges and at heights of 4.30 m (from ground level to center of650

the anemometer).651
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Fig. 1. Map of Amsterdam metropolitan area and city center with locations of all sensor networks:857

Personal Weather Stations (PWS) and Commercial Microwave Links (CML) (a), and of858
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perature (a), cumulative rainfall (c), wind (f), pressure (g) and dewpoint depression calcu-862

lated from humidity and temperature (i), smartphone battery derived air temperature (b),863

light (e) and pressure (g). The colored areas indicate the interquartile range (IQR is mean864

25–75 percentile) of all observations at that time; lines show the median values, except for865

(b) where the line shows mean temperature. Shaded areas indicate night-time. Pearson cor-866

relation (r), standard deviation of the difference (SD) and absolute bias (bias) are calculated867

based on hourly values compared with WMO observations at Schiphol. . . . . . . . 44868

Fig. 3. (a) Hourly average wind speed measured by PWS (solid line) and AAMS (dotted line),869

as well as the PWS dewpoint depression (red line, right y-axis). (b) Hourly averaged air870

pressure measured by PWS (solid line) and smartphone (dashed line) on June 9. The vertical871

lines indicate the boundaries of the frontal passage. At 6 UTC the front is located to the west872

of Amsterdam; at 12 UTC the front has passed over the city. . . . . . . . . . . 45873

Fig. 4. Hourly 99th percentile of smart phone radiation (green lines) with Amsterdam airport cloud874

cover in oktas on June 9 (blue, circles) and June 18 (orange, diamonds). June 9 (blue solid875

line) and June 18 (orange solid line) are a cloudy and cloud-free day, respectively. . . . . 46876

Fig. 5. Double mass plots of commercial microwave link derived rainfall observations (a) and PWS877

rainfall observations (b) on 9 June against the reference of respectively the path-averaged878

and overlying pixel gauge-adjusted radar rainfall observations. Polarization, path length and879

frequency of the CML network is given in (c) and (d) shows scatter plots of both together880

with their Pearson correlation (r), standard deviation of the difference (SD) and absolute881

bias (bias) at 15 min time steps. . . . . . . . . . . . . . . . . . 47882

Fig. 6. Map of 60-min rainfall depths over the Amsterdam metropolitan area based on gauge-883

adjusted radar data (pixels; 100% availability), CML data (paths; only CMLs with 100%884

availability are shown), and PWS data (circles; only PWSs with at least 83.3% availability885

are shown). . . . . . . . . . . . . . . . . . . . . . . . 48886

Fig. 7. (a) Time series of temperature measurement according to the median of all (blue), center887

(red) and suburban (green) PWSs, as well as the median of the AAMS network (orange)888

and the mean smartphone derived air temperatures (purple). (b) The difference between889

the median PWS center and suburban temperatures (red, dashed); the AAMS and WMO890

(blue, dashed); and the PWS center and WMO (green, dashed). Shaded areas indicate night-891

time. (c) Scatter plot of hourly median PWS and smartphone temperatures against median892

AAMS station data, with Pearson correlation (r), standard deviation of the difference (SD)893

and absolute bias (bias). . . . . . . . . . . . . . . . . . . . . 49894

Fig. 8. Urban Heat Island map for the Amsterdam metropolitan area (black rectangle) showing895

difference between hourly averaged air temperature for AAMS network (squares) and PWSs896

(circles) with respect to 1.5-m air temperature at WMO station Amsterdam airport observed897

at 3 UTC (triangle). The blue rectangle represents Amsterdam city center, the remainder of898

the metropolitan area is suburban. Only stations with at least 80% availability are shown. Of899

41

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0091.1.



the 309 PWSs only 4 are colder than WMO, at most 0.6◦C, and 24 are at least 6.0◦C warmer900

than WMO, at most 12.4◦C. . . . . . . . . . . . . . . . . . . 50901
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FIG. 1. Map of Amsterdam metropolitan area and city center with locations of all sensor networks: Personal

Weather Stations (PWS) and Commercial Microwave Links (CML) (a), and of smartphone battery temperature

readings and Amsterdam Atmospheric Monitoring Supersite (AAMS) stations (b).
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FIG. 6. Map of 60-min rainfall depths over the Amsterdam metropolitan area based on gauge-adjusted radar

data (pixels; 100% availability), CML data (paths; only CMLs with 100% availability are shown), and PWS data

(circles; only PWSs with at least 83.3% availability are shown).
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FIG. 7. (a) Time series of temperature measurement according to the median of all (blue), center (red) and

suburban (green) PWSs, as well as the median of the AAMS network (orange) and the mean smartphone derived

air temperatures (purple). (b) The difference between the median PWS center and suburban temperatures (red,

dashed); the AAMS and WMO (blue, dashed); and the PWS center and WMO (green, dashed). Shaded areas

indicate night-time. (c) Scatter plot of hourly median PWS and smartphone temperatures against median AAMS

station data, with Pearson correlation (r), standard deviation of the difference (SD) and absolute bias (bias).
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FIG. 8. Urban Heat Island map for the Amsterdam metropolitan area (black rectangle) showing difference

between hourly averaged air temperature for AAMS network (squares) and PWSs (circles) with respect to 1.5-m

air temperature at WMO station Amsterdam airport observed at 3 UTC (triangle). The blue rectangle represents

Amsterdam city center, the remainder of the metropolitan area is suburban. Only stations with at least 80%

availability are shown. Of the 309 PWSs only 4 are colder than WMO, at most 0.6◦C, and 24 are at least 6.0◦C

warmer than WMO, at most 12.4◦C.
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